Code: EE4T1

II B.Tech - II Semester - Regular Examinations - May 2016

COMPLEX VARIABLES AND SPECIAL FUNCTIONS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

11x 2 = 22 M

1)

- a) Write the definition of analytic function.
- b) If $\alpha + i\beta = tan^{-1}(x + iy)$ then find the real part α value.
- c) Find the general value of log (-i).
- d) Evaluate the complex integral $\int_C \frac{dz}{z-a}$ where *C* is the circle |z-a| = r.
- e) Find the value of $\int_0^{z+i} (\bar{z})^2$ along the line y = x/2.
- f) Write the definition of Isolated singularity of an analytic function.
- g) Find the poles of $f(z) = \frac{z-3}{z^2+2z+5}$. Are these poles lie in the circle |z + 1 i| = 2
- h) Write the definition of conformal transformation.
- i) Why the transformation $w = \frac{1}{z}$ is called inversion and reflection.

- j) Express $j_3(x)$ in the use of $j_0(x) \& j_1(x)$.
- k) Write the orthogonally condition for Legendre polynomials.

PART - B

Answer any *THREE* questions. All questions carry equal marks.

3 x 16 = 48 M

2)

a) If $w = \emptyset + i\Psi$ represents the complex potential for an electric find and $\Psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$ determine the function \emptyset . 8 M

b) If
$$f(z)$$
 is a regular function of z , prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2 \qquad 8 \text{ M}$$

- 3) a) Using Cauchy's integral formula evaluate the following integrals 8 M
 - (i) $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$, where C is the circle |z| = 3
 - (ii) $\int_C \frac{\cos \pi z}{z^2 1} dz$ around a rectangle with vertices $2 \pm i, -2 \pm i$

(b)Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 in the region (i) $|z| < 1$
(ii) $1 < |z| < 2$ (iii) $|z| > 2$ 8 M

4)

a) Find the residue of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$ at its poles and hence evaluate $\int_C f(z)dz$ where C is the circle |z| = 2.58 M

b) Evaluate
$$\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$$
 along a unit circle. 8 M

5)

- a) Under the transformation $w = \frac{1}{z}$, find the image of (i) the circle |z - 2i| = 2 (ii) The straight line y - x + 1 = 08 M
- b) Find the bilinear transformation which maps the points z = 1, i, -1 into the w= 0, 1, ∞ . 8 M

6)

a) Prove that
$$xJ'_{n}(x) = -nJ_{n}(x) + xJ_{n-1}(x)$$
 8 M

b) Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials. 8 M