Code: EE4T1

II B.Tech - II Semester - Regular Examinations - May 2016

COMPLEX VARIABLES AND SPECIAL FUNCTIONS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1)
a) Write the definition of analytic function.
b) If $\alpha+i \beta=\tan ^{-1}(x+i y)$ then find the real part α value.
c) Find the general value of $\log (-i)$.
d) Evaluate the complex integral $\int_{C} \frac{d z}{z-a}$ where C is the circle $|z-a|=r$.
e) Find the value of $\int_{0}^{z+i}(\bar{z})^{2}$ along the line $y=x / 2$.
f) Write the definition of Isolated singularity of an analytic function.
g) Find the poles of $f(z)=\frac{z-3}{z^{2}+2 z+5}$. Are these poles lie in the circle $|z+1-i|=2$
h) Write the definition of conformal transformation.
i) Why the transformation $w=\frac{1}{z}$ is called inversion and reflection.
j) Express $j_{3}(x)$ in the use of $j_{0}(x) \& j_{1}(x)$.
k) Write the orthogonally condition for Legendre polynomials.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2)

a) If $w=\emptyset+i \Psi$ represents the complex potential for an electric find and $\Psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ determine the function \emptyset.
b) If $f(z)$ is a regular function of z, prove that
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
8 M
3) a) Using Cauchy's integral formula evaluate the following integrals
(i) $\int_{C} \frac{e^{2 z}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$
(ii) $\int_{C} \frac{\cos \pi z}{z^{2}-1} d z$ around a rectangle with vertices $2 \pm i,-2 \pm i$
(b)Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region (i) $|z|<1$ (ii) $1<|z|<2$ (iii) $|z|>2$
4)
a) Find the residue of $f(z)=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at its poles and hence evaluate $\int_{C} f(z) d z$ where C is the circle $|z|=2.5$

8 M
b) Evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$ along a unit circle.
5)
a) Under the transformation $w=\frac{1}{z}$, find the image of (i) the circle $|z-2 i|=2$ (ii) The straight line $y-x+1=0$ 8 M
b) Find the bilinear transformation which maps the points $z=1, i,-1$ into the $w=0,1, \infty$.
6)
a) Prove that $x J_{n}^{\prime}(x)=-n J_{n}(x)+x J_{n-1}(x)$
b) Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.

